Polyurethane/halloysite nano tubes/sericin based electrospun nanocomposite for sustained drug release

Author:

Joshi Mangala,Roy Sukumar,TV Ayeshvaryaa

Abstract

Abstract In this study, the feasibility of the production of electrospun nanofibre composite mainly for biomedical applications is reported. Biocompatible polyether-based polyurethane, natural proteinaceous polymer silk sericin (SS) and natural inorganic nanoclay halloysite as a drug carrier with a model drug chlorhexidine acetate were used to produce nanofibres by electrospinning technique. Sericin was extracted from Bombyx mori silk cocoons by high pressure high temperature (HT-HP) degumming. Chlorhexidine acetate (CA), an antimicrobial agent, was loaded into halloysite nanotubes (HNTs) at different weight ratios, and 1:1 weight ratio showed the maximum loading which was confirmed by TGA and XRD analysis. Electrospinning of polymer solution with different compositions of polyurethane, sericin, CA and CA-HNTs was conducted at 10% w/v concentration, 20 kV voltage, 15 μl min−1 flow rate and 10 cm distance which resulted in the formation of bead-free uniform fibres. Antimicrobial activity of nanofibrous webs was evaluated by the disc diffusion method (AATCC 90) and it was found that CA and CA-HNT loaded nanofibres show sustained antibacterial action against both the Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. The CA-HNT and sericin/CA-HNT loaded nanofibres showed controlled release of CA. In addition, the cytocompatibility assessment of developed nanofibrous composites showed good biocompatibility. Hence the produced composite nanofibre can serve as an excellent material for sustained drug release for various biomedical applications.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3