Synthesis, characterization, and in vitro DPPH radical scavenging assay study of PEG-capped carbon nanoparticles derived from Butea monosperma flower extract

Author:

Das Arijit,Prabhu M P Taraka,Sarkar Nandini

Abstract

Abstract In this work, the core carbon nanoparticles (BM CNs) and polyethylene glycol 400 (PEG400)-capped BM CNs were synthesised from Butea monosperma flower extract via the facile direct heating method. They were investigated for their intriguing properties and in vitro antioxidation activity in comparison with Carica papaya seed (CPS) extract via DPPH assay. The CNs were characterised by DLS, XRD, HR-TEM, TGA, FT-IR, UV–vis spectral analysis and quantum yield measurement. The PEGylated CNs demonstrated decent quantum yield, favourable size, and turbostratic carbon phase apart from better stability and dispersion nature as compared to the uncapped entity. The mildly stable uncapped sample with zeta potential −17.9 mV featured its extensively aggregated form, unlike the capped sample with −23.0 mV zeta potential, which sheds light on its enhanced stability by PEG400. Antiradical capacities of the CNs in comparison with CPS extract demonstrated the PEG400-bound nanomaterial of its superior antiradical activity against the other two controls. This study provides an insight into the novel polymer-CNs’ potent antioxidant property which can be further explored for its incorporation in targeted drug delivery and other biomedical applications.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3