Flexible sensor based on multi-walled carbon nanotube-SnO2 nanocomposite material for hydrogen detection

Author:

Aleksanyan Mikayel S,Sayunts Artak G,Shahkhatuni Gevorg H,Simonyan Zarine G,Aroutiounian Vladimir M,Shahnazaryan Gohar E

Abstract

Abstract This study aimed to develop a high-performance hydrogen flexible sensor based on multi-walled carbon nanotube (MWCNT):SnO2 material. The MWCNT:SnO2 thin film was deposited onto a flexible polyimide substrate by the electron-beam deposition method to perform the low temperature detection of hydrogen. The thickness and surface morphology of the sensing layers have been determined by the thickness measuring profilometer and the scanning electron microscope (SEM), respectively. The flexible MWCNT:SnO2 sensor exhibited excellent sensitive characteristics to hydrogen in a range of 25–3000 ppm. H2 sensing parameters like sensor response, recovery, and response times were investigated at different operating temperatures. The minimum response and recovery times of the sensor corresponding to 1000 ppm H2 concentrations were found to be 37 and 554 s, respectively. The investigated sensing parameters demonstrate that this work can provide the possibility of a versatile route to fabricate flexible hydrogen sensor with high sensitivity and selectivity, which demonstrates its great potential in hydrogen leakage monitoring.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3