Identification of normal modes responsible for ferroelectric properties in organic ferroelectric CBDC

Author:

Mukhopadhyay SanghamitraORCID

Abstract

Abstract Structure and dynamics of hydrogen bonded organic ferroelectric CBDC (1-cyclobutene-1,2-dicarboxylic acid, C6H8O4) have been investigated using inelastic neutron scattering (INS) spectroscopy and first principles lattice dynamics. Vibrational modes of O–H–O bending, related with two different types of hydrogen bonds, inter and intra-molecular, are manifested as two sets of doublets in the range of 900–1400 cm−1 in the INS spectrum. First principles density functional theory (DFT) is used to assign these doublets to out-of-the-plane and in-plane vibrations of these two types of O–H—O bending modes. Correlating structure and dynamics we find that although the local structures of the hydrogen bonded protons are similar, their medium range order may influence their vibrational frequencies. Vibrational modes of non-hydrogen bonded protons also are assigned separately in the spectrum. Comparing the calculated and the experimental INS spectra it is predicted that hydrogen bonded O–H bonds are more anharmonic than non-hydrogen bonded C–H bonds. From the calculated Born effective charge tensor it is predicted that inter-molecular hydrogen bonds contribute more to the ferroelectric polarisation of CBDC than intra-molecular ones. A large LO-TO splitting of the O–H stretching mode at 2471 cm−1 is identified with the mode that has significant contribution to the ferroelectric polarisation. As this mode is sensitive to long range Coulomb interactions and is responsible for ferroelectric properties of the material, vibrational spectroscopy combined with DFT calculations is proposed as a characterisation tool to investigate ferroelectric properties in the CBDC molecular crystal.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3