Effect of annealing on specific magnetization of Fe-Cr-Nb-Cu-Si-B with the partial replacement of Fe by chromium

Author:

Iqbal M Zashed,Hossain M AORCID,Gafur M A,Mahmud Md Sultan,Saha D K,Sikder S S

Abstract

Abstract The samples Fe73.5-xCrxNb3Cu1Si13.5B9 [x = 7, 9, 10 and 12.5 are prepared in the amorphous state in the form of thin ribbons by rapid quenching technique at wheel speed of 25 m s−1 in an Ar atmosphere. The composition was sintered at the temperature 450–8000 C for half an hour. The saturation magnetization (Ms) and Curie temperature (Tc) of these alloys decrease linearly with the increase of Cr content for the entire composition range due to dilution of Fe magnetic moment and weakening of exchange interaction between of magnetic atoms. The critical composition for disappearance of ferromagnetism fall of curve Ms with the replacement Fe by Cr, where the nearest neighbor coupling is longer dominant and intermediate range occur, giving rise to a significant portion of antiferromagnetic interaction. The Curie temperature decreases due the weaker interaction among the Fe magnetic moment. The structural relaxation is associated with the magnetization up to the annealed temperature 600 °C and the chemical disorderness arise with reference to enhancement of M of annealed samples. M versus H curves sharply rise which indicates the formation of crystallization and it seems to ferromagnetic and for x = 12.5 which is paramagnetic in the amorphous condition with Tc = 246 K. This increase of M for the four samples are due to the evolution of ferromagnetic α-Fe (Si) nanograin crystal.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3