Design of a hybrid plasmonic waveguide device using a trench structure

Author:

Okamoto HiroyukiORCID,Kamada Shun,Haraguchi Masanobu,Okamoto Toshihiro

Abstract

Abstract A hybrid plasmonic waveguide device was designed using a trench structure. This waveguide device was designed to improve the affinity of plasmonic devices with optical circuits by connecting them with traditional waveguide structures. The waveguide device consists of three structural segments, comprising two traditional waveguide sections for input and transmission and a hybrid plasmonic waveguide. The designed waveguide structure was evaluated using numerical analysis techniques such as the finite-difference time-domain method. The device's transmission property affects the interference between the guided light and the surface plasmon polaritons. Controlling the length of the hybrid waveguide device, which is composed of a traditional waveguide coated with a gold layer, allows the transmission intensity of the device to be controlled. The device's transmission characteristic can be controlled based on the relationship between the wavelength of the incident light and the length of the hybrid waveguide device. The device will transmit only specific incident light wavelengths because the length of the hybrid plasmonic waveguide remains constant. The characteristics of this device indicate potential for applications to nanoscale devices, optical integrated circuits and plasmonic sensors.

Funder

Support Center for Advanced Telecommunications Technology Research Foundation

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3