A methodology for formulating dynamical equations in analytical mechanics based on the principle of energy conservation

Author:

Zhou YinqiuORCID,Wang XiumingORCID

Abstract

Abstract In this work, a methodology is proposed for formulating general dynamical equations in mechanics under the umbrella of the principle of energy conservation. It is shown that Lagrange’s equation, Hamilton’s canonical equations, and Hamilton-Jacobi’s equation are all formulated based on the principle of energy conservation with a simple energy conservation equation, i.e., the rate of kinetic and potential energy with time is equal to the rate of work with time done by external forces; while D’Alembert’s principle is a special case of the law of the conservation of energy, with either the virtual displacements (‘frozen’ time) or the virtual displacement (‘frozen’ generalized coordinates). It is argued that all of the formulations for characterizing the dynamical behaviors of a system can be derived from the principle of energy conservation, and the principle of energy conservation is an underlying guide for constructing mechanics in a broad sense. The proposed methodology provides an efficient way to tackle the dynamical problems in general mechanics, including dissipation continuum systems, especially for those with multi-physical field interactions and couplings. It is pointed out that, on the contrary to the classical analytical mechanics, especially to existing Hamiltonian mechanics, the physics essences of Hamilton’s variational principle, Lagrange’s equation, and the Newtonian second law of motion, including their derivatives such as momentum and angular momentum conservations, are the consequences of the law of conservation of energy. In addition, our proposed methodology is easier to understand with clear physical meanings and can be used for explaining the existing mechanical principles or theorems. Finally, as an application example, the methodology is applied in fluid mechanics to derive Cauchy’s first law of motion.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3