Role of hydrogen co-doping on opto-electronic behaviors of Na-H co-doped zinc oxide: a first principle study

Author:

Akhond MD Rajbanul,Sharif AhmedORCID

Abstract

Abstract In this work, the electronic structure and optical properties are investigated within the framework of the density functional theory (DFT) for different Na-H co-doping scenarios to find out the suitability of H co-doping technique for achieving p-type conductivity in ZnO. Very low formation energies were found for the H co-doped systems compared to others which suggests that they can suppress other n-type impurities and increase the effect of p-type NaZn defects in the lattice. From the electronic structure calculations, we have found that NaZn doped structures with 50% H co-doping produces the best p-type behavior indicating importance of controlling annealing time. Moreover, from the optical calculations, it has been found that NaZn creates impurity states 174 meV above the valence band and electron concentration in these states can be controlled by H co-doping concentration. H co-doping has not produced any substantial lattice strain as compared to other dopants and structures with Na-H co-doping is transparent in the visible light range.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3