Generalized Lie symmetries and almost regular Lagrangians: a link between symmetry and dynamics

Author:

Speliotopoulos Achilles DORCID

Abstract

Abstract The generalized Lie symmetries of almost regular Lagrangians are studied, and their impact on the evolution of dynamical systems is determined. It is found that if the action has a generalized Lie symmetry, then the Lagrangian is necessarily singular; the converse is not true, as we show with a specific example. It is also found that the generalized Lie symmetry of the action is a Lie subgroup of the generalized Lie symmetry of the Euler–Lagrange equations of motion. The converse is once again not true, and there are systems for which the Euler–Lagrange equations of motion have a generalized Lie symmetry while the action does not, as we once again show through a specific example. Most importantly, it is shown that each generalized Lie symmetry of the action contributes one arbitrary function to the evolution of the dynamical system. The number of such symmetries gives a lower bound to the dimensionality of the family of curves emanating from any set of allowed initial data in the Lagrangian phase space. Moreover, if second- or higher-order Lagrangian constraints are introduced during the application of the Lagrangian constraint algorithm, these additional constraints could not have been due to the generalized Lie symmetry of the action.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference28 articles.

1. Constrained dynamics: generalized Lie symmetries, singular Lagrangians, and the passage to Hamiltonian mechanics;Speliotopoulos;J. Phys Commun.,2020

2. Presymplectic manifolds and the Dirac-Bergmann theory of constraints;Gotay;J. Math. Phys.,1978

3. Presymplectic lagrangian systems I: the constraint algorithm and the equivalence theorem;Gotay;Annales de L’Institut Henri Poincare, Section A,1979

4. Presymplectic lagrangian systems II: the second-order equation problem;Gotay;Annales de L’Institut Henri Poincare, Section A,1980

5. Theory of singular Lagrangians;Cariñena;Fortschr. Phys.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3