Induced drag in two dimensions in ideal fluids

Author:

Meyer R WORCID,Erland SORCID

Abstract

Abstract In this paper we suggest a model for how a significant part of the drag forces on two-dimensional objects can be derived using the circulation that is naturally maintained around the objects. We assume incompressible and inviscid potential flow and that the circulation is already generated. The resulting velocity field complements the one that is known to generate Prandtl’s induced drag in three dimensions. We demonstrate how fluid particles in a velocity field are attracted towards an object, and that this, due to conservation of momentum, results not only in lift, but also in drag forces. The magnitude of a disturbance velocity can be derived from the circulation of bound and shed vortices accompanying the object and parameters taken from the von Kármán vortex street description. Another part of the drag is generated by vortices that emerge behind blunt bodies when fluid particles do not follow the surface of the objects. We obtain a mathematical description of the resistance of several types of blunt bodies and rotating cylinders. The model involves no parameters that are derived from empirical data. Still, this inviscid approach corresponds well with experimental data in viscous flow and is close to a mathematical empirical description of rotating cylinders by W. G. Bickley.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Aerodonetics: constituting the second volume of a complete work on aerial flight;Lanchester,1908

2. Tragflügeltheorie: I. Mitteilung;Prandtl;Göttinger Nachr.,1918

3. Boundary-Layer Theory

4. Airfoil Design and Data

5. Xfoil: an analysis and design system for low reynolds number airfoils;Drela,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3