Analyzing the features of material nonlinearity evaluation in a rectangular aluminum beam using Rayleigh waves: theoretical and experimental study

Author:

Masurkar FaeezORCID,Tse Peter

Abstract

Abstract This study proposes a new parameter to evaluate the material nonlinearity in a thick Aluminum (Al) beam having rectangular cross section using Rayleigh waves. This parameter yields a true value of material nonlinearity using the amplitudes of Rayleigh wave harmonics, in contrast to the relative value yielded by the conventional nonlinearity parameter β′. The Rayleigh wave harmonics are generated in a thick Al 1100 specimen through experiments to estimate its inherent material nonlinearity. This inherent nonlinearity is embedded in the material via lattice elasticity and reckoned using the higher order elastic coefficients. With this experimental investigation, it is found that the accurate evaluation of material nonlinearity is highly dependent on the tone burst cycles in the excitation signal. It is also found that there is a small amount of contribution to the material nonlinearity parameter from the imaginary part of the shear wave component. Furthermore, the relationship between material nonlinearity evaluated using the proposed parameter, excitation frequency, propagation distance, and tone burst cycles in the excitation signal have been unveiled. After knowing these relationships, the material nonlinearity evaluated using the proposed parameter is compared with that obtained from a physics-based nonlinearity parameter containing higher order elastic coefficients. The deviation between the results is minimal. Thus, with the use of amplitudes of harmonics of the Rayleigh wave generated through the experiments, the proposed parameter can evaluate the true material nonlinearity of thick Al beams with fair accuracy.

Funder

Research Grants Council of the Hong Kong Special Administrative Region, China

City University of Hong Kong

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3