Dynamical active particles in the overdamped limit

Author:

Fieguth Diego MORCID

Abstract

Abstract Mobile microscopic bodies, such as motile cells, can be modelled phenomenologically as ‘active particles’ which can move against external forces by depleting an internal energy depot. The microscopic mechanisms underlying such ‘active’ behaviour must ultimately obey fundamental physics: energy depots must actually consist of dynamical degrees of freedom, such as chemical reaction coordinates, which in some way couple to the particle’s motional degrees of freedom. As a step towards connecting phenomenological models with microscopic dynamical mechanisms, recent papers have studied the minimalistic dynamical mechanism of a ‘dynamical active particle’, and shown how nonlinear couplings can allow steady energy transfer from depot to motion, even in the presence of weak dissipation. Most real active particles move through viscous environments, however, and are strongly damped. Here we therefore generalize the dynamical active particle into the overdamped regime. We find that its mechanism still operates, and in particular allows the overdamped active particle to travel just as far against friction as the undamped model, by moving at a slower average speed. Our results suggest that active particle phenomenology can indeed be consistent with comprehensible dynamical mechanisms, even in strongly dissipative environments.

Funder

SFB/TR 185

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3