Thermoelastic pulsed laser ablation of silver thin films with organic metal–SiO2 adhesion layer in water: application to the sustainable regeneration of glass microfluidic reactors for silver nanoparticles

Author:

Tahir ,Ginoble Pandoli OmarORCID,Zaman Quaid,Concas Guilherme C,Gisbert Mariana,Cremona Marco,Freire Fernando Lazaro,Carvalho Isabel C S,Bevilaqua Pedro H C,Santos de Sá Druval,Canellas Alexandre Pinto,Mattoso Vinicius,Del Rosso TommasoORCID

Abstract

Abstract The synthesis of metal nanoparticles (NPs) using microfluidic reactors has become a major method for limiting reagent consumption and achieve a precise control of the morphological properties. Failure in realizing the reproducibility of the results is mostly associated with the accumulation of metallic nanostructures on the walls of the microfluidic devices, periodically removed by acid treatment. In this study, we show that ns-pulsed laser ablation (PLA) in water can be a safe, effective, and green method for the regeneration of clogged microfluidic reactors. The effect of the laser-pulse fluence on the removal of metallic nanostructures was studied for the first time on silver (Ag) thin films with a thickness of 50 nm deposited over SiO2 substrates, using 3-mercaptopropyl trimethoxysilane as a chemical adhesion layer. As point of novelty, the experimental results show that at low fluence (F < 0.1 J cm−2), ablation is principally caused by delamination of the thin film associated with the thermoelastic force while thermal processes inducing phase conversion of the metal dominate at higher fluence. Low-fluence regimes are better suited for the single-pulse removal of the nanomaterial, whereas in high F regimes, we observed melting and recondensation of the metal on the SiO2 surface so that multiple pulse interactions were necessary for complete ablation of the thin film. For the delamination and the phase transformation processes, the threshold fluences were 3.7 × 10−2 and 7.0 × 10−2 J cm−2, respectively. The experimental setup in the thermoelastic PLA regime was applied to unclog glass microfluidic devices used for synthesizing citrate-stabilized AgNPs. Using this simple and easily achievable laser-scanning experimental configuration, we demonstrated that PLA in water is a reliable and efficient technique, with results comparable to acidic treatment in terms of efficiency and time necessary for the complete removal of the Ag nanomaterial.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3