Edge states and sublattice imbalance of rectangular graphene nanoflakes

Author:

Yorikawa HORCID

Abstract

Abstract The energy states of π-electrons in a rectangular graphene flake with a pair of zigzag edges and a pair of armchair edges were studied using a tight-binding method. It is demonstrated that the known exact solution can be interpreted as the results derived from the analytical solutions for graphene nanoribbons on a brick-type lattice by considering the wavefunctions and sublattice imbalance. Edge states in rectangular graphene flakes with a symmetric structure, whose energies are not exactly zero but approach zero as the size increases, are characterized by discrete allowed modes, whereas the zero-energy state appears in rectangular graphene flakes with an asymmetric structure. By applying the edges states of rectangular graphene flakes, zero-energy states were examined in Y-shaped graphene flakes, which involve the same three zigzag edges as in the triangular graphene flakes. Sublattice imbalance in the model was found to force the edge states, including the undamped mode, into zero energy. Configurations of the allowed modes in the zero-energy state are revealed.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3