Reinforcing critical links for robust network logistics: A centrality measure for substitutability

Author:

Ezaki TakahiroORCID,Imura Naoto,Nishinari Katsuhiro

Abstract

Abstract Logistics networks are becoming more complex and interconnected. Guaranteeing the performance of the entire system when a part of the network is disrupted (e.g. due to excessive demands and extreme weather conditions) is one of the important issues. However, how much transportation resources should be allocated to which part of the network while maintaining efficiency is an open question. In this paper, we propose a novel metric, the substitutability centrality, which quantifies how much each transport link in the network contributes to the robustness of the system against disruptions. This metric is compelling in the following aspects: (1) it is intuitively interpretable; (2) it does not require simulation or optimization calculations; and (3) it takes into account changes in transportation routes of delivery due to disruptions. Furthermore, as a proof of concept, we demonstrate a simple case study, in which capacity allocation based on the proposed metric can maintain high performance of the system against various types of disruptions. We also found that this approach might not be effective for further increasing the robustness of networks that have many bypass routes.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference64 articles.

1. Intermodal transport in freight distribution: a literature review;Agamez-Arias;Transport Reviews,2017

2. New methodology for estimating reliability in transportation networks with degraded link capacities;Al-Deek;Journal of Intelligent Transportation Systems,2006

3. Error and attack tolerance of complex networks;Albert;Nature,2000

4. Emergence of scaling in random networks;Barabasi;Science,1999

5. A dynamic traffic assignment model for highly congested urban networks;Ben-Akiva;Transportation Research Part C: Emerging Technologies,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3