Abstract
Abstract
Rotational manipulation of microscopic birefringent particles has conventionally been done by manoeuvring the polarization of the trapping light in optical tweezers. The torque on the particle is a sum of contributions from the linear polarization and the circular polarization, while assuming that the difference in optical path lengths between the extraordinary and the ordinary components of polarization depends upon the wavelength of light, the thickness of the particle and the birefringence. Generally, the thickness of spherical microparticles is assumed to be the diameter which renders the particle appear cylindrical. We test this hypothesis for sizes relevant towards optical tweezers manipulation. We find that for a range of particles from the Rayleigh regime to the early Mie regime, the approximation holds good.
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献