Intermittent structures and quasi-stationary equilibrium in a simple magnetized torus in open field line configuration

Author:

Alex PrinceORCID,Barni RuggeroORCID,Roman Hector EduardoORCID,Riccardi ClaudiaORCID

Abstract

Abstract A steady regime dominated by intermittent blob and hole structures is identified in the plasma state of a simple magnetized torus by achieving a quasi-stationary equilibrium using an open magnetic field line configuration. The open helical field line configuration is characterized by a connection length, L c = 2 a B φ B z 1750 cm, and pitch ratio, r B = B z B φ 0.01 . This is realized by superposing a vertical magnetic fied, B z , to the toroidal field, B φ , and the regime is achieved for B z 0.4 mT. The combined effect of plasma rotation, arising from a substantial radial electric field, together with an open field line, results in vertically elongated plasma profile and an asymmetric sheared poloidal flow. The analysis shows the existence of density fluctuations exhibiting universal statistical properties, dominated by non-Gaussian blob events in the edge region and holes in the core plasma, separated by a region ascribed as blob birth zone corresponding to a velocity shear layer. Two-dimensional conditional averaging analyses of fluctuations indicate that blobs form in the sheared layer, when the leading edge of an elongated coherent structure breaks off by differential stretching exerted by the background fluctuating field. Convection of this isolated blob out of the contour corresponding to the maximum radial electric field in the low field side, leads to its ejection while holes move along the same contour driven back into the main plasma. The corresponding potential structure shows counter-rotating E × B velocity field within oppositely charged structures, where the embedded electric field is consistent with the observed structure propagation. A comparison with cross-correlation analysis yields a similar conclusion except for a slight overestimation of the structure size and lifetime.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3