Orbital dependent band degeneracy and edge states in single layer and AA bilayer honeycomb lattice systems with p orbital degeneracy

Author:

Hayashi Genki,Mizokawa TakashiORCID

Abstract

Abstract We have investigated band structure and edge states of single and AA bilayer honeycomb lattice systems with p orbital degeneracy which would be relevant for relatively heavy metals such as Pb and Bi. The p electrons, which are triply degenerate in the atomic limit, form quadruple degeneracy at K point in a single layer honeycomb lattice. The spin-orbit interaction splits the quartet at K point into two singlets and one doublet which are mixtures of p x , p y and p z orbitals. In the AA bilayer honeycomb lattice, the Dirac node at K point is deformed into circular line node around it. With the intermediate interlayer coupling, there is a degenerate point along Γ-K with p z character. A p x /p y type degenerate point exists under the strong interlayer coupling. This degenerate point is robust against the spin-orbit interaction and the antiferromagnetic spin arrangement only along the intralayer bonds. Without SOI, localized edge states with p x /p y or p z character are created at the zigzag edges both in the single and AA bilayer systems. In the AA bilayer system with SOI, only the p x /p y edge states exhibit the Dirac-like dispersion.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3