A novel semi-analytical solution to Jeffery-Hamel equation

Author:

Nourazar SalmanORCID,Dehghanpour Hamid Reza,Ramezani Mohammad

Abstract

Abstract A new approach based on the Adomian decomposition and the Fourier transform is introduced. The method suggests a solution for the well-known magneto-hydrodynamic (MHD) Jeffery-Hamel equation. Results of Adomian decomposition method combined with Fourier transform are compared with exact and numerical methods. The FTADM as an exclusive and new method satisfies all boundary and initial conditions over the entire spatial and temporal domains. Moreover, using the FTADM leads to rapid approach of approximate results toward the exact solutions is demonstrated. The second derivative of Jeffery-Hamel solution related to the similar number of items of recursive terms under a vast spatial domain shows the maximum error in the order of 10 5 comparing to exact and numerical solutions. The results also imply that the FTADM can be considered as a precise approximation for solving the third-order nonlinear Jeffery-Hamel equations.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forward and Inverse Problems Related to Nanofluid Flow Between Nonparallel Planes in Uncertain Environment;Journal of Computational and Nonlinear Dynamics;2022-04-01

2. A Novel Numerical Approach for Simulating the Nonlinear MHD Jeffery–Hamel Flow Problem;International Journal of Applied and Computational Mathematics;2021-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3