Abstract
Abstract
A new approach based on the Adomian decomposition and the Fourier transform is introduced. The method suggests a solution for the well-known magneto-hydrodynamic (MHD) Jeffery-Hamel equation. Results of Adomian decomposition method combined with Fourier transform are compared with exact and numerical methods. The FTADM as an exclusive and new method satisfies all boundary and initial conditions over the entire spatial and temporal domains. Moreover, using the FTADM leads to rapid approach of approximate results toward the exact solutions is demonstrated. The second derivative of Jeffery-Hamel solution related to the similar number of items of recursive terms under a vast spatial domain shows the maximum error in the order of
10
−
5
comparing to exact and numerical solutions. The results also imply that the FTADM can be considered as a precise approximation for solving the third-order nonlinear Jeffery-Hamel equations.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献