Comparison of optical trapping wavelengths for nanoscopic diamonds containing nitrogen-vacancy centers

Author:

Roy Srestha,Ghosh Atanu,Lokesh Muruga,Nalupurackal Gokul,Chakraborty Snigdhadev,Goswami Jayesh,Bhallamudi Vidya P,Dhomkar SiddharthORCID,Roy BasudevORCID

Abstract

Abstract In this article, we explore the effect of two different infrared (IR) laser wavelengths on the optical properties of trapped nano-diamonds containing high-density ensembles of nitrogen vacancy (NV) centers. We investigate 975 nm and 1064nm wavelengths for trapping lasers and find that NV photoluminescence quenching is more prominent for 1064nm illumination than for 975 nm illumination when simultaneously excited with a 532 nm laser. In order to understand the underlying mechanism, we develop a rate-equation-based model that takes into account various transition probabilities. The model suggests that the findings cannot be explained only by imposing modification of the NV charge-state ratio under varied illumination wavelengths, and, thus, we speculate that the effective ionization and recombination rates associated with NV charge states for the studied samples are highly wavelength-dependent in the probed regime. Importantly, the results demonstrate that 975 nm laser is desirable for optical trapping of NV-diamonds, especially for NV-based sensing applications.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

IOP Publishing

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3