Optical dispersion equations for metals applicable to the Far-IR through EUV spectral range

Author:

Forouhi A R,Bloomer IORCID

Abstract

Abstract The long-standing problem of finding a general formulation of optical dispersion for metals, valid over a wide spectral range of photon energy E is tackled. To this end, equations for refractive index n and extinction coefficient k as functions of E are developed. Functions n E and k E respectively represent real and imaginary parts of complex index of refraction N E . Previous formulations, most of which are based on various combinations of Drude and Lorentz models, are either useable only over a limited spectral range or do not accurately fit experimental data. The formulation overcomes these shortcomings by exploiting concepts set forth by Forouhi and Bloomer in 1986, 1988 and 2019 publications pertaining to optical dispersion of semiconductors and insulators. These concepts are centered on time-dependent perturbation theory and consistency with principle of causality. The new expression for k E is based on three types of events initiated by photon-electron interactions in metals: intraband electron dipole transitions; interband electron dipole transitions; inelastic collisions of electrons. Expression for n E is obtained as Hilbert transform of k E . It is demonstrated that the new dispersion equations satisfy Titchmarsh’s Theorem, a mathematical theorem that conveys the principle of causality, which in turn establishes the theoretical validity of the formulation. Equations for n E and k E are fitted to published experimental data of metals encompassing all metal groups of the periodic table. Reported data span various ranges of energy, from far-infrared to extreme-ultraviolet. Excellent fits between calculated and experimental spectra are achieved. Having established consistency with Titchmarsh’s Theorem and by extension, causality, plus agreement with experimental findings suggests this formulation represents a valid description of optical dispersion of metals.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3