On the comparison of diversity of parts of a distribution

Author:

Rajaram RajeevORCID,Ritchey Nathan,Castellani Brian

Abstract

Abstract The literature on diversity measures, regardless of the metric used (e.g., Gini-Simpson index, Shannon entropy) has a notable gap: not much has been done to connect these measures back to the shape of the original distribution, or to use them to compare the diversity of parts of a given distribution and their relationship to the diversity of the whole distribution. As such, the precise quantification of the relationship between the probability of each type p i and the diversity D in non-uniform distributions, both among parts of a distribution as well as the whole, remains unresolved. This is particularly true for Hill numbers, despite their usefulness as ‘effective numbers’. This gap is problematic as most real-world systems (e.g., income distributions, economic complexity indices, rankings, ecological systems) have unequal distributions, varying frequencies, and comprise multiple diversity types with unknown frequencies that can change. To address this issue, we connect case-based entropy, an approach to diversity we developed, to the shape of a probability distribution; allowing us to show that the original probability distribution g 1, the case-based entropy curve g 2 and the c {1,k} versus the c { 1 , k } * ln A { 1 , k } curve g 3, which we call the slope of diversity, are one-to-one (or injective), i.e., a different probability distribution g 1 gives a different curve for g 2 and g 3. Hence, a different permutation of the original probability distribution g 1(that leads to a different shape) will uniquely determine the graphs g 2 and g 3. By proving the injective nature of our approach, we will have established a unique way to measure the degree of uniformity of parts as measured by D P /c P for a given part P of the original probability distribution, and also have shown a unique way to compute the D P /c P for various shapes of the original distribution and (in terms of comparison) for different curves.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the mathematical quantification of inequality in probability distributions;Journal of Physics Communications;2024-08-01

2. Mathematical diversity of parts for a continuous distribution;Journal of Physics Communications;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3