Abstract
Abstract
We use a quantum variant of the Sagnac interferometer to argue for the quantum nature of gravity assuming the equivalence principle, which we formulate in its quantum version. We first present an original derivation of the phase acquired in the conventional Sagnac matter-wave interferometer, within the Hamiltonian formalism. Then we modify the interferometer in two crucial respects. The interfering matter wave is interfered along two different distances from the centre and the interferometer is prepared in a superposition of two different angular velocities. We argue that if the radial and angular degrees of freedom of the matter wave become entangled through this experiment, then, via the equivalence principle, the gravitational field must be non-classical.
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献