The algebraic origin of the Doppler factor in the Liénard–Wiechert potentials

Author:

Galeriu CălinORCID

Abstract

Abstract After reviewing the algebraic derivation of the Doppler factor in the Liénard–Wiechert potentials of an electrically charged point particle, we conclude that the Dirac delta function used in electrodynamics must be the one obeying the weak definition, non-zero in an infinitesimal neighborhood, and not the one obeying the strong definition, non-zero in a point. This conclusion emerges from our analysis of (a) the derivation of an important Dirac delta function identity, which generates the Doppler factor, (b) the linear superposition principle implicitly used by the Green function method, and (c) the two equivalent formulations of the Schwarzschild–Tetrode–Fokker action. As a consequence, in full agreement with our previous discussion of the geometrical origin of the Doppler factor, we conclude that the electromagnetic interaction takes place not between points in Minkowski space, but between corresponding infinitesimal segments along the worldlines of the particles.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3