Abstract
Abstract
Non-traditional examples can be very inspiring for students. This paper applies classical mechanics to different ways of skating in ice hockey. Skating blades glide easily along the ice in the direction of the blade. Horizontal forces on the skates are thus essentially perpendicular to the blade. Speed skaters glide long distances on each skate before pushing off for the next stride. A hockey player running for the puck may take a number quite short steps in a short explosive rush before shifting to longer strides, where the recurring need to change direction requires additional work by the skater. This paper investigates an alternative stride, with a longer gliding phase in a circular arc, where the centripetal force provided by the ice acting on the skates changes the direction of motion, without the need for additional energy. In addition, the conservation of angular momentum leads to increased speed as the centre of mass is shifted closer to the centre of the circular arc. Finally, we discuss an angular-momentum-based technique to reverse the direction of motion as fast as possible.
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献