Modular low-cost 3D printed setup for experiments with NV centers in diamond

Author:

Stegemann JanORCID,Peters Marina,Horsthemke Ludwig,Langels Nicole,Glösekötter Peter,Heusler StefanORCID,Gregor MarkusORCID

Abstract

Abstract With the advent of quantum technology, the need for affordable, flexible and robust laboratory experiments not only for students, but also at high school level is increasing. Here, for the first time, we report on a simple modular 3D printed low-cost (<250 €) setup which fulfils these needs for quantum sensing experiments based on nitrogen-vacancy centers in diamonds. Commercially available setups for optically detected magnetic resonance in microdiamonds used as quantum sensor for magnetic fields are not only beyond the reach of any high school (>10 000 €), but also have shortcomings from a didactical point of view, as all the components of the setup are hidden within a ’black box’, doomed to be successful ’plug and play’. In contrast, our open-source experimental kit consists of optical components that are placed inside 3D printed open-framed cubes, that can be arranged freely on a grid. This modular and flexible design can provide an inquiry-based learning experience both at undergraduate and high school level.

Funder

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3