Sliding down a rough curved hill

Author:

Ivchenko VladimirORCID

Abstract

Abstract In this paper, we analyse the process of a particle sliding down an arbitrary curved hill in the presence of friction. We show that in this case, the kinetic friction force turns out to be effectively dependent on the speed. We find that the final speed for each concave (convex) profile should be less (greater) than that for the corresponding inclined plane. In the limit of extremely small final speed or profiles of the hill close to linear, the final speed does not depend on the shape of the trajectory even in the presence of kinetic friction. As an illustrative example, we perform the calculation of the final speed for a concave hill in the form of a quarter circle. We also derive the shape of the curved hill profile for which a body can slide down at a constant speed.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference7 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Motion of a metal nut sliding around a vertical loop;Physics Education;2024-03-05

2. Sliding and rolling along circular tracks in a vertical plane;American Journal of Physics;2023-05-01

3. Skier and loop-the-loop with friction;American Journal of Physics;2022-08

4. Descending from A to B along the quickest path;Physics Education;2022-07-29

5. Pendulum Motion Damped by Speed-Independent Friction;The Physics Educator;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3