Exploring digital signal processing using an interactive Jupyter notebook and smartphone accelerometer data

Author:

Pirinen PORCID,Klein PORCID,Lahme S ZORCID,Lehtinen AORCID,Rončević L,Susac AORCID

Abstract

Abstract Digital signal processing is a valuable practical skill for the contemporary physicist, yet in physics curricula, its central concepts are often introduced either in method courses in a highly abstract and mathematics-oriented manner or in lab work with little explicit attention. In this paper, we present an experimental task in which we focus on a practical implementation of the discrete Fourier transform (DFT) in an everyday context of vibration analysis using data collected by a smartphone accelerometer. Students are accompanied in the experiment by a Jupyter Notebook Companion, which serves as an interactive instruction sheet and a tool for data analysis. The task is suitable for beyond-first-year university physics students with some prior experience in uncertainty analysis, data representation, and data analysis. Based on our observations the experiment is very engaging. Students have consistently reported interest in the experiment and they have found it a good demonstration of the DFT method.

Funder

Erasmus+

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3