Shooting stars on schedule: synchronising re-entry of particles launched from a satellite

Author:

Blanco Philip RORCID

Abstract

Abstract The ALE-3 mission plans to create artificial ‘shooting stars’ in the upper atmosphere by launching pellets sequentially from a satellite in low Earth orbit. How does one arrange for all pellets to re-enter over the intended location simultaneously? Starting with conservation of energy and angular momentum, I derive a version of Kepler’s equation that gives time as a function of radial distance in an orbit, which can be used to find the transfer time from the pellet’s ejection to its re-entry as a function of its launch velocity. I show that for a given pellet ejection speed, there is a launch angle from the satellite that results in the fastest transfer time. I use these results to determine the pellets’ launch times and velocities for simultaneous arrival at a desired re-entry point. These results can be applied to de-orbiting any set of objects launched from a satellite, and use concepts that can be covered in an advanced undergraduate course in physics or aerospace engineering.

Publisher

IOP Publishing

Reference21 articles.

1. Astrodynamics (for teachers);Roy;Phys. Educ.,1977

2. Orbit design and analysis of artificial meteors generating micro-satellites;Shibuya,2021

3. Another comment on eccentricity as a vector;Mungan;Eur. J. Phys.,2005

4. Kepler’s equation and some of its pearls;Orlando;Am. J. Phys.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3