Abstract
Abstract
We rigorously investigate the rapidly oscillating contributions in the sinc-function representation of the Dirac delta function and the Fourier transform of the Coulomb potential. Beginning with a derivation of the standard integral representation of the Heaviside step function, we examine the representation of the Dirac delta function that contains a rapidly oscillating sinc function. By contour integration, we prove that the representation satisfies the properties of the Dirac delta function, although it is a function divergent at nonzero points. This is a good pedagogical example demonstrating the difference between a function and a distribution. In most textbooks, the rapidly oscillating contribution in the Fourier transform of the Coulomb potential into the momentum space has been ignored by regulating the oscillatory divergence with the screened potential of Wentzel. By performing the inverse Fourier transform of the contribution rigorously, we demonstrate that the contribution is a well-defined distribution that is indeed zero, even if it is an ill-defined function. Proofs are extended to exhibit that the Riemann–Lebesgue lemma can hold for a sinc function, which is not absolutely integrable.
Funder
National Research Foundation of Korea
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The art of Schwinger and Feynman parametrizations;Journal of the Korean Physical Society;2023-03-20