Investigation of infinitely rapidly oscillating distributions

Author:

Kim U-RaeORCID,Cho Sungwoong,Han Wooyong,Lee JungilORCID

Abstract

Abstract We rigorously investigate the rapidly oscillating contributions in the sinc-function representation of the Dirac delta function and the Fourier transform of the Coulomb potential. Beginning with a derivation of the standard integral representation of the Heaviside step function, we examine the representation of the Dirac delta function that contains a rapidly oscillating sinc function. By contour integration, we prove that the representation satisfies the properties of the Dirac delta function, although it is a function divergent at nonzero points. This is a good pedagogical example demonstrating the difference between a function and a distribution. In most textbooks, the rapidly oscillating contribution in the Fourier transform of the Coulomb potential into the momentum space has been ignored by regulating the oscillatory divergence with the screened potential of Wentzel. By performing the inverse Fourier transform of the contribution rigorously, we demonstrate that the contribution is a well-defined distribution that is indeed zero, even if it is an ill-defined function. Proofs are extended to exhibit that the Riemann–Lebesgue lemma can hold for a sinc function, which is not absolutely integrable.

Funder

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The art of Schwinger and Feynman parametrizations;Journal of the Korean Physical Society;2023-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3