Predicting the sheet resistance of laser-induced graphitic carbon using machine learning

Author:

Le Hung,Minhas-Khan Aamir,Nambi SureshORCID,Grau Gerd,Shen Wen,Wu DazhongORCID

Abstract

Abstract While laser-induced graphitic carbon (LIGC) has been used to fabricate cost-effective conductive carbon on flexible substrates for applications such as sensors and energy storage devices, predicting the resistance of the component fabricated via LIGC remains challenging. In this study, a two-step machine learning-based modeling framework is developed to predict the sheet resistance of the materials fabricated using LIGC. The two-step modeling framework consists of classification and regression. First, random forest (RF) is used to classify successful and failed trials. Second, extreme gradient boosting (XGBoost), RF, support vector machine with radial basis function, multivariate adaptive spline regression, and multilayer perceptron are used to predict the sheet resistance in each successful trial. In addition, an analysis of the change in sheet resistance with respect to laser energy per unit area is conducted to remove data points with high sheet resistance. XGBoost is also used to determine the importance of each process parameter. We demonstrate the modeling framework on datasets collected from experiments where LIGC lines (1D) and LIGC squares (2D) are engraved. For the 1D dataset, the RF classification model achieves a 95% accuracy. For both 1D and 2D datasets, a comparative study shows that XGBoost outperforms other algorithms. XGBoost predicts the sheet resistance of the LIGC lines and squares with a MAPE of 7.08% and 8.75%, respectively. XGBoost also identifies laser resolution as the most significant parameter. Moreover, experimental results show that models built on the dataset merging the 1D and 2D datasets result in lower prediction accuracy than those built on the 1D and 2D datasets separately. The modeling framework allows one to determine the sheet resistance of LIGC with varying laser processing conditions without conducting expensive and time-consuming experiments.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3