Origins of strain localization in a silver-based flexible ink under tensile load

Author:

Li Qiushi,Pierron Olivier,Antoniou AntoniaORCID

Abstract

Abstract Flexible electronics often employ composite inks consisting of conductive flakes embedded in a polymer matrix to transmit electrical signal. Recently, localized necking was identified as a cause of a substantial increase in normalized resistance with applied strain thereby adversely impacting electrical performance. The current study explores two possible contributing factors for the formation of such localization—ink surface roughness and local variations in silver flake volume fraction. Uniaxial tension experiments of a DuPont 5025 type ink are used to inform a constitutive model implemented using finite element method on different substrates. Surface roughness was modeled by sinusoidal variation in ink height, whose amplitude and wavelength are informed by experimental laser profilometry scan data. Local flake fraction variations obtained from experimental measurements before applying any strain, were modeled as local variations in the elastic modulus according to an inverse rule of mixtures between the silver flake and acrylic binder material properties. The study identified that the ink height roughness is the most impactful contributor to the subsequent strain localization. The substrate elastic properties impact the number and magnitude of localization bands, with the stiffer substrate delocalizing strain and averting catastrophic crack formation seen with a more compliant substrate. The model incorporating surface roughness closely matches experimental measurements of local strain across different substrates. The study can inform designers of the adverse impact of ink surface roughness on localization and subsequent detrimental increase of the resistance.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3