Laser induced graphene on phenolic resin and alcohol composite sheet for flexible electronics applications

Author:

Kothuru Avinash,Goel SanketORCID

Abstract

Abstract Harnessing Laser-induced graphene (LIG) on various substrates, its optimization and application for various electronic devices has increased in the recent years. LIG has been reported as an alternative process for the realization of graphene for flexible electronics with excellent strength, conductivity and mechanical robustness. However, in a single-step manufacturing process, the development of a cost-effective, scalable electronic system using LIG is very challenging. In this work, a novel, simple, low-cost, and solid-state approach has been introduced to print and develop LIG-based conductivity traces and patterns. Here, the LIG conductive zones have been formed on various platforms by using phenolic resin (PR). The LIG regions were effectively developed from direct CO2 laser ablation on the PR and polyvinyl alcohol (PR-PVA) composite sheets. This technique makes it possible to easily create highly conductive arrays on various substrates for realizing the components and devices for flexible electronics. By utilizing the augmented power and the speed of CO2 laser, and the ratio of PR-PVA, the optimal conductivity of the formed LIG on PR-PVA sheet has been observed. Unique characteristics of LIG on PR-PVA include simple synthesis process, flexibility, ability to form a thin film with desired conductivity, and cost-effectiveness. The feasibility and viability of the successful LIG on PR-PVA sheet was demonstrated for applications like the capacitive touch sensor and the pressure sensor matrix.

Funder

Indian Space Research Organisation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3