High-resolution patterning of silica nanoparticle-based ionogels by reverse-offset printing and its characterization

Author:

Kusaka YasuyukiORCID,Kimnannara Khiev,Koutake Masayoshi,Kano ShinyaORCID,Furukawa Hiromitsu,Fukuda NobukoORCID

Abstract

Abstract In this study, nanoparticle-based, high-resolution patternable ionogels are presented to provide a route for realizing printed solid-state ionic devices. By incorporating an ionic liquid (IL) into a spherical silica nanoparticle suspension, a quasi-solid ionogel layer compatible with reverse-offset printing (ROP) with a spatial resolution of approximately 5 μm was realized. In situ near-infrared (NIR) spectroscopic analysis revealed the drying kinetics of the ionogel ink during printing, and a temporal margin for successful patterning in relation to its dry state was provided. In contrast to polymer-based gels, the present ionogel can be regarded as a porous medium of silica filled with ionic liquids with a certain degree of saturation. By optimizing the ink formulations, ROP patterning was successful for saturation up to 102%, indicating the nanoscale pores between silica nanoparticles can be fully used as an ion-conductive phase in the proposed patternable gel. The conductivity depends drastically on saturation, with a saturation exponent of approximately −7 according to Archie’s law. From a complementary scratch test, an ionogel at a saturated condition still exhibited fragile but solid-like characteristics. As a demonstration, planar micro-supercapacitors fully printed with reverse-offset printable ionogel and carbon inks were fabricated. A comparison with a drop-casted IL showing a similar capacitance indicates a limited ability of the carbon nanoparticle material used here, while a relatively high resistance of the silica-nanoparticle-based ionogel hinders a fast cyclic voltammetry response.

Funder

JSPS

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Flexible Devices by High-resolution Printing Technology;Seikei-Kakou;2023-02-20

2. High-Density Wire Formations by High-Resolution Printed Electronics;Journal of The Japan Institute of Electronics Packaging;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3