Solution-processed flexible metal-oxide thin-film transistors operating beyond 20 MHz

Author:

Wei Xiaozhu,Kumagai ShoheiORCID,Tsuzuku Kotaro,Yamamura Akifumi,Makita Tatsuyuki,Sasaki Mari,Watanabe ShunORCID,Takeya Jun

Abstract

Abstract Complementary metal-oxide-semiconductor, an elementary building block, allows for a high degree of implementation of logic circuits with relatively low power consumption and low manufacturing cost, which plays a vital role not only in current Si electronics, but also in printed flexible devices. To meet the looming challenges of the Internet of Things, p-channel thin-film transistors (TFTs) with an excellent mobility and processability have been increasingly developed using organic semiconductors. However, owing to the inherent electron-donating nature of organic compounds, the high performance of n-channel organic TFTs has yet to be demonstrated. Here, in this paper, we developed state-of-the-art solution-processed indium-zinc-oxide (IZO) TFTs with high electron mobility, sharp turn-on characteristics at 0 V, and excellent atmospheric stability and compatibility with wet patterning processes. With the damage-free lithography process in conjunction with the ultimate optimization of entire device processes, IZO-based TFT arrays were successfully fabricated via a solution process on flexible polyimide substrates. A cutoff frequency of 23 MHz in air was achieved, which is almost twice as fast as the frequency used in a near-field communication band. Furthermore, the as-fabricated IZO-based TFTs even function well under bending stress. Therefore, the current concept and technique is expected to open up opportunities to develop practical flexible devices with high-speed operation.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3