Capacitive and illumination systems based on printed and hybrid electronics

Author:

Peřinka NikolaORCID,Pozo BorjaORCID,Fernández de Gorostiza Erlantz,Mendes-Felipe Cristian,Vilas-Vilela José Luis,Lanceros-Méndez Senentxu

Abstract

Abstract Functional electronic systems have been screen- or inkjet-printed on different plastic substrates, including polyethylene terephthalate, polycarbonate and polycarbonate/acrylonitrile butadiene styrene blends. Mutual capacitive sensors were designed and printed on flexible substrates and the capacitive response and functionality of the printed sensor with integrated passive electronic components was demonstrated. The applicability of both, inkjet printing and screen printing for the development of such capacitive sensors was evaluated. The influence of the substrate, sensor design and the printing technique parameters on both printability and functionality are discussed. Further, a flexible illumination system was developed, where the printed circuit was combined with surface mounted light emitting diodes and integrated circuits. Finally, the developed capacitive sensors and the illumination system were connected to each other to demonstrate the connectivity and interoperability of the different printed circuit components.

Funder

Basque Government Industry and Education Department

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3