Mechanical properties of structured copper and printed silver hybrid stretchable electronic systems

Author:

Salo TeemuORCID,Werft Lukas,Adams Basel,Vito Donato Di,Halme Aki,Scenev Vitalij,Walter Hans,Löher ThomasORCID,Vanhala Jukka

Abstract

Abstract Stretchable electronics can be realized using different manufacturing methods and hybrids thereof. An example of the latter is the combination of stretchable circuit boards with screen-printing, which will be discussed in this work. The hybrid stretchable electronics structures are based on photolithographically structured and rigid copper islands and screen-printed silver ink interconnections. This enables the assembly of components with a high number of contacts onto the copper islands and deformable silver ink lines between islands. The transition area between islands and lines is critical due to local stress concentration. The effect and potential mitigations were studied by measuring the electrical resistance of test interconnections under mechanical loading. The first set of samples was elongated up to 30% in tensile tests. The second set of samples was elongated 10%, 20%, and 30% in cyclic tests up to 10 000 cycles. After the tests, extensive failure analysis, e.g. scanning electron microscope, and finite element analysis were conducted. In tensile tests at maximum load, the interconnections either snap apart or their resistance increases by 640% in the transition area. Adding protective structures around the transition area, the resistance increase can be reduced to 12%. Stress concentration in the transition area can be controlled with the layout of the structures, as shown in the cyclic tests. Depending on a layout, the structures protect interconnections in the transition area (resistance <4 Ω at 10% and 20% throughout 10 000 cycles, and up to 5000 cycles at 30% elongation), or with particular designs, cause fatal damage of the circuitry and fail early. The identified failure mechanism is typically fatigue damage caused by the repeated bending of the protective structure. The observed resistance increase at the interface was closely related to the crack propagation phase in the protective structures.

Funder

Academy of Finland under the project REEL

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3