Active matrix-based pressure sensor system with a 4 × 16 printed decoder designed with a flexible hybrid organic process design kit

Author:

Gupta PalakORCID,Lukosiunas Justas,Marques Gabriel CadilhaORCID,Raths Sebastian,Stehlin Sebastian,Schlisske Stefan,Exner Kai,Strunk Karl-Phillip,Melzer Christian,Erk Peter,Mittermaier Josef,Klotz Anton,Aghassi-Hagmann Jasmin

Abstract

Abstract The innovative field of printed sensor with a demand for high accuracy, sensitivity and durability has enabled a wide application area in sensing, healthcare etc. A large-area printed sensor system on a flexible foil substrate emplying p-type organic field-effect transistors (OFETs) is presented. Thereby, the OFET is fabricated through a hybrid manufacturing process, including photolithographically structured source- and drain-electrodes, ink-jet printed organic semiconductor, and spin-coated dielectric. Moreover, a dedicated device model, derived from the variable range hopping model, is developed and integrated together with process related design rules, materials properties and geometric information into a comprehensive process design kit (FH_OPDK). The FH_OPDK is integrated in a commercial electronic design automation tool and is used to design and perform post-layout simulations on logic gates, such as INV, NAND2, and NOR2 as well as circuitry such as ring oscillators and a 4 × 16 digital decoder. Several circuit topologies have been tested and evaluated in a detailed model-hardware correlation analysis. Finally we have optimized logic gates and the decoder in a PMOS only, pseudo CMOS design style. To demonstrate the feasibility of the full sensor system in hardware a 16 × 16 active matrix pressure sensor on a flexible substrate integrated with a 4 × 16 binary decoder was fabricated and tested. We have integrated our flexible hybrid sensor system with a PCB board and a microcontroller to demonstrate the hardware readout platform capable of detecting the weight of objects and visualizing a digital map of applied forces.

Funder

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3