Design of a scalable, flexible, and durable thermoelectric cooling device for soft electronics using Kirigami cut patterns

Author:

Rosenberg Z BORCID,Weiner N C,Shahariar HORCID,Li B M,Peavey J L,Mills A C,Losego M D,Jur J S

Abstract

Abstract A flexible, soft thermoelectric cooling device is presented that shows potential for human cooling applications in wearable technologies and close-to-body applications. Current developments lack integration feasibility due to non-scalable assembly procedures and unsuitable materials for comfortable and durable integration into products. Our devices have been created and tested around the need to conform to the human body which we have quantified through the creation of a repeatable drape testing procedure, a metric used in the textile industry. Inspired by mass manufacturing constraints, our flexible thermoelectric devices are created using commercially available materials and scalable processing techniques. Thermoelectric legs are embedded in a foam substrate to provide flexibility, while Kirigami-inspired cuts are patterned on the foam to provide the drape necessary for mimicking the performance of textile and close to body materials. In total, nine different configurations, three different fill factors and three different Kirigami cut patterns were fabricated and inspected for thermal characterization, mechanical testing, flexibility and drape. Our studies show that adding Kirigami patterns can increase the durability of the device, improve the flexibility, decrease the drape coefficient, and have <1% of impact on cooling performance at higher fill factors (>1.5%), reaching temperature differences up to 4.39 °C ± 0.17 °C between the hot and cold faces of the device. These thermoelectric cooling devices show great flexibility, durability, and cooling for integration into soft cooling products.

Funder

National Science Foundation

Thermoflex Technologies

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3