A seed and bridge layer method for inkjet printing of narrow traces on receding ink-substrate combinations

Author:

Pratt NicholasORCID,Rao Pratap MORCID

Abstract

Abstract Inkjet printing of electronic materials is of interest for digital printing of flexible electronics and sensors, but the width of the inkjet-printed lines is still large, limiting device size and performance. Decreasing the drop volume, increasing the drop spacing, and increasing the ink-substrate contact angle are all approaches by which the line width can be lowered, however these approaches are limited by the nozzle geometry, ink coalescence and bead instabilities, and contact angle hysteresis, respectively. Here we demonstrate a novel approach for stable inkjet printing of very narrow lines on ink-substrate combinations with a high contact angle, utilizing the de-wetting of the ink due to the decreased contact angle hysteresis. After printing and drying an initial layer of disconnected seed drops of silver nanoparticle ink, we print an additional layer of bridging drops of the same ink in between the dried seed drops. The bridging drops expand to touch the dried seed drops and then retract into a line, due to the pinning of the wet ink on the dried seed ink but not on the substrate, forming a continuous silver trace. The trace width is decreased from 60 μm with a traditional printing approach down to 12.6 μm with this seed-bridge approach. The electrical conductivity of the silver trace is similar to that of a conventionally printed trace. Due to poor adhesion on the print substrate, the trace was transferred to a separate polymer substrate with a simple hot-pressing procedure, which preserves the electrical conductivity of the trace.

Funder

Air Force Research Laboratory

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3