3D-printed wearable BaTiO3/PDMS piezoelectric nanogenerator for self-powered body movement sensing

Author:

Shi XiaoquanORCID,Sun YazhouORCID,Tian HaiyingORCID,Liu HaitaoORCID,Li Dekai

Abstract

Abstract Flexible piezoelectric nanogenerators (PENGs) used in body movement real-time monitoring are of great interest for their wide application potential such as in the field of smart healthcare. In this work, a self-powered BaTiO3/Polydimethylsiloxane (PDMS) PENG for body movement sensing was successfully fabricated by extrusion 3D printing. Matrix system composed of different ratios of PDMS was selected based on the rheological property of materials. Experimental investigations were conducted to examine the impact of printing pressure and speed on the linewidth. Subsequently, the extrusion parameters for nanogenerators were determined based on the printed linewidth. The composite showed good ferroelectric property. After polarization, the nanogenerators exhibited an improvement in output performance of up to 55.2%. Additionally, the device demonstrated a good linear relationship between voltage and tapped force test by an electromechanical vibrator. Successful detection of body or muscle movement signals was achieved when the nanogenerator was mounted on the human finger, throat, or foot using a wearable sock, highlighting its potential for applications in self-powered wearable devices for smart healthcare.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3