Laser-defined graphene strain sensor directly fabricated on 3D-printed structure

Author:

Aga Roberto SORCID,Webb Tyler MORCID,Pandhi Twinkle,Aga Rachel,Estrada David,Burzynski Katherine MORCID,Bartsch Carrie M,Heckman Emily M

Abstract

Abstract A direct-write method to fabricate a strain sensor directly on a structure of interest is reported. In this method, a commercial graphene ink is printed as a square patch (6 mm square) on the structure. The patch is dried at 100 °C for 30 min to remove residual solvents but the printed graphene remains in an insulative state. By scanning a focused laser (830 nm, 100 mW), the graphene becomes electrically conductive and exhibits a piezoresistive effect and a low temperature coefficient of resistance of −0.0006 °C−1. Using this approach, the laser defines a strain sensor pattern on the printed graphene patch. To demonstrate the method, a strain sensor was directly fabricated on a 3D-printed test coupon made of ULTEM 9085 thermoplastic. The sensor exhibits a gauge factor of 3.58, which is significantly higher than that of commercial foil strain gauges made of constantan. This method is an attractive alternative when commercial strain sensors are difficult to employ due to the high porosity and surface roughness of the material structure under test.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3