Additively manufactured microstrip patch antennas in flat, curved, and embedded configurations

Author:

Gurusekaran ArvindORCID,Ahmad Mukhtar,Ciocca ManuelaORCID,Pompilio Michele,Nijkoops AnnelotORCID,Carrasco Pena AlejandroORCID,Lugli Paolo,Petti LuisaORCID

Abstract

Abstract Microstrip patch antennas (MPAs) are compact and easy-to-fabricate antennas, widely used in long-distance communications. MPAs are commonly fabricated using subtractive methods such as photolithographic etching of metals previously deposited using sputtering or evaporation. Despite being an established technique, subtractive manufacturing requires various process steps and generates material waste. Additive manufacturing (AM) techniques instead allow optimal use of material, besides enabling rapid prototyping. AM methods are thus especially interesting for the fabrication of electronic components such as MPAs. AM methods include both 2D and 3D techniques, which can also be combined to embed components within 3D-printed enclosures, protecting them from hazards and/or developing haptic interfaces. In this work, we exploit the combination of 2D and 3D printing AM techniques to realize three MPA configurations: flat, curved (at 45), and embedded. First, the MPAs were designed and simulated at 2.3 GHz with a −16.25 dB S 11 value. Then, the MPA dielectric substrate was 3D-printed using polylactic acid via fused deposition modeling, while the antenna material (conductive silver ink) was deposited using three different AM methods: screen printing, water transfer, and syringe-based injection. The fabricated MPAs were fully operational between 2.2–2.4 GHz, with the flat MPA having a higher S 11 peak value compared to the curved and embedded MPAs. Development of such AM MPAs in various configurations demonstrated in this work can enable rapid development of long-range antennas for novel applications in e.g. aerospace and Internet of Things sectors.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3