Photoinitiated chemical vapor deposition (piCVD) of composition tunable, ionically conductive hydrogels on diverse substrates

Author:

Patamia Evan DORCID,Andrew Trisha LORCID

Abstract

Abstract Ionically conductive hydrogels are finding prominence in a wide range of emerging devices and applications, including biopotential sensors, organic field effect transistors, biomedicine, and soft robotics. Traditionally, these gels are synthesized through solution-phase polymerization or solvent based swelling of a polymer network and then cast in place or adhered to an intended substrate after synthesis. These fabrication approaches place artificial limitations on the accessible chemical composition and ionic conductivity of the gels, and limit deployment of ionically conductive hydrogels in complex platforms. Here we present a modular method to create ionically conductive hydrogels on a variety of rigid, flexible, or filamentary substrates through a photoinitiated chemical vapor deposition (piCVD) process. First, a viscosity tunable precursor mixture of desired ionic composition and strength is created and coated onto a target substrate. Next, an acrylate film is grown directly on these coated substrates via piCVD. Since both the monomer and photoinitiator used during the piCVD process are miscible in the aqueous precursor mixture, polymerization occurs at both the surface of and within the precursor layer. Using this two-step strategy, we isolate a robust composite hydrogel with independently tunable ionic properties and physical structure. This method is compatible with most substrates and results in a conformal, persistent gel coating with excellent rehydration properties. Gels containing a variety of biocompatible salts can be accessed, without concomitant changes in physical structure and morphology. Ionic conductivities can be tuned between 1 × 10−5–0.03 S cm−1 by changing the ionic strength of the precursor mixture. Additionally, we show that the material retains its ion concentration and conductivity after washing. Finally, we deploy this material onto several different substrates and show that through this method the same gel can be manufactured in-place regardless of the intended substrate.

Funder

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3