Process considerations for Aerosol-Jet printing of ultra fine features

Author:

Gramlich GeorgORCID,Huber RobertORCID,Häslich Florian,Bhutani Akanksha,Lemmer Uli,Zwick Thomas

Abstract

Abstract In recent years, Aerosol-Jet (AJ) printing has become an increasingly popular technology applied in research ranging from the biomedical field to military applications to printed semiconductors. Extensive efforts have been made to understand the influence of process parameters and the underlying physical principles. Nevertheless, little attention has been paid to the optimization of ultra-small and highly precise printed features. Pushing the printer to its limits and manufacturing structures as small as tens of microns with a micrometer accuracy poses significant challenges, because effects that can be ignored for printing large features play a crucial role. This study demonstrates how the printing speed quickly causes intolerable distortions. In contrast to large-feature printing, the printing speed cannot be used as a free parameter to set the print thickness. We will discuss the non-constant printing behavior induced by the divert/boost shutter and present shutter on the fly as a solution to many problems, but only if the subroutine code is optimized. The modifications made to the code are disclosed in this paper for the first time. Knowing that printing precise features often results in a high print thickness, we will briefly discuss the issue of cracks caused by the drying of thick nanoparticle films. Altogether, this paper presents a range of important considerations for AJ printing ultra-fine features and an interesting insight into the particularities of operating the printer at its limits.

Funder

BMBF

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3