Active learning of continuous-time Bayesian networks through interventions*

Author:

Linzner Dominik,Koeppl Heinz

Abstract

Abstract We consider the problem of learning structures and parameters of continuous-time Bayesian networks (CTBNs) from time-course data under minimal experimental resources. In practice, the cost of generating experimental data poses a bottleneck, especially in the natural and social sciences. A popular approach to overcome this is Bayesian optimal experimental design (BOED). However, BOED becomes infeasible in high-dimensional settings, as it involves integration over all possible experimental outcomes. We propose a novel criterion for experimental design based on a variational approximation of the expected information gain. We show that for CTBNs, a semi-analytical expression for this criterion can be calculated for structure and parameter learning. By doing so, we can replace sampling over experimental outcomes by solving the CTBNs master-equation, for which scalable approximations exist. This alleviates the computational burden of integrating over possible experimental outcomes in high-dimensions. We employ this framework in order to recommend interventional sequences. In this context, we extend the CTBN model to conditional CTBNs in order to incorporate interventions. We demonstrate the performance of our criterion on synthetic and real-world data.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Reference40 articles.

1. Gene network inference using continuous time Bayesian networks: a comparative study and application to Th17 cell differentiation;Acerbi;BMC Bioinform.,2014

2. Discrimination among mechanistic models;Box;Technometrics,1967

3. Bayesian experimental design: a review;Chaloner;Stat. Sci.,1987

4. Mean field variational approximation for continuous-time Bayesian networks;Cohn;J. Mach. Learn. Res.,2010

5. Follow-up designs to resolve confounding in multifactor experiments;Daniel;Technometrics,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3