Abstract
Abstract
We study the statistical fluctuations of Lyapunov exponents in the discrete version of the non-integrable perturbed sine-Gordon equation, the dissipative AC- and DC-driven Frenkel–Kontorova model. Our analysis shows that the fluctuations of the exponent spacings in the strictly overdamped limit, which is nonchaotic, conform to an uncorrelated Poisson distribution. By studying the spatiotemporal dynamics, we relate the emergence of the Poissonian statistics to Middleton’s no-passing rule. Next, by scanning values of the DC drive and the particle mass, we identify several parameter regions for which this one-dimensional model exhibits hyperchaotic behavior. Furthermore, in the hyperchaotic regime where roughly fifty percent of the exponents are positive, the fluctuations exhibit features of the correlated universal statistics of the Gaussian orthogonal ensemble (GOE). Due to the dissipative nature of the dynamics, we find that the match between the Lyapunov spectrum statistics and the universal statistics of GOE is not complete. Finally, we present evidence supporting the existence of the Tracy–Widom distribution in the fluctuation statistics of the largest Lyapunov exponent.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献