Identifying dominant industrial sectors in market states of the S&P 500 financial data
-
Published:2023-04-01
Issue:4
Volume:2023
Page:043402
-
ISSN:1742-5468
-
Container-title:Journal of Statistical Mechanics: Theory and Experiment
-
language:
-
Short-container-title:J. Stat. Mech.
Author:
Wand Tobias,Heßler Martin,Kamps Oliver
Abstract
Abstract
Understanding and forecasting changing market conditions in complex economic systems like the financial market is of great importance to various stakeholders such as financial institutions and regulatory agencies. Based on the finding that the dynamics of sector correlation matrices of the S&P 500 stock market can be described by a sequence of distinct states via a clustering algorithm, we try to identify the industrial sectors dominating the correlation structure of each state. For this purpose, we use a method from explainable artificial intelligence (XAI) on daily S&P 500 stock market data from 1992 to 2012 to assign relevance scores to every feature of each data point. To compare the significance of the features for the entire data set we develop an aggregation procedure and apply a Bayesian change point analysis to identify the most significant sector correlations. We show that the correlation matrix of each state is dominated only by a few sector correlations. Especially the energy and IT sector are identified as key factors in determining the state of the economy. Additionally we show that a reduced surrogate model, using only the eight sector correlations with the highest XAI-relevance, can replicate
90
%
of the cluster assignments. In general our findings imply an additional dimension reduction of the dynamics of the financial market.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Reference51 articles.
1. TensorFlow: large-scale machine learning on heterogeneous systems;Abadi,2015
2. yfinance 0.1.70;Aroussi,2022
3. When instability makes sense;Ashwin;Nature,2005
4. Generating random correlation matrices by the simple rejection method: why it does not work;Böhm;Stat. Probab. Lett.,2014
5. Big data meets artificial intelligence,2018
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献