Entangled multiplets, asymmetry, and quantum Mpemba effect in dissipative systems

Author:

Caceffo Fabio,Murciano Sara,Alba Vincenzo

Abstract

Abstract Recently, the entanglement asymmetry emerged as an informative tool to understand dynamical symmetry restoration in out-of-equilibrium quantum many-body systems after a quantum quench. For integrable systems the asymmetry can be understood in the space-time scaling limit via the quasiparticle picture, as it was pointed out in Ares et al (2023 Nat. Commun. 14 2036) . However, a quasiparticle picture for quantum quenches from generic initial states was still lacking. Here we conjecture a full-fledged quasiparticle picture for the charged moments of the reduced density matrix, which are the main ingredients to construct the asymmetry. Our formula works for quenches producing entangled multiplets of an arbitrary number of excitations. We benchmark our results in the XX spin chain. First, by using an elementary approach based on the multidimensional stationary phase approximation we provide an ab initio rigorous derivation of the dynamics of the charged moments for the quench treated in Ares et al (2023 SciPost Phys. 15 089). Then, we show that the same results can be straightforwardly obtained within our quasiparticle picture. As a byproduct of our analysis, we obtain a general criterion ensuring a vanishing entanglement asymmetry at long times. Next, by using the Lindblad master equation, we study the effect of gain and loss dissipation on the entanglement asymmetry. Specifically, we investigate the fate of the so-called quantum Mpemba effect (QME) in the presence of dissipation. We show that dissipation can induce QME even if unitary dynamics does not show it, and we provide a quasiparticle-based interpretation of the condition for the QME.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3