Gauges, loops, and polynomials for partition functions of graphical models

Author:

Chertkov Michael,Chernyak Vladimir,Maximov Yury

Abstract

Abstract Graphical models represent multivariate and generally not normalized probability distributions. Computing the normalization factor, called the partition function, is the main inference challenge relevant to multiple statistical and optimization applications. The problem is #P-hard that is of an exponential complexity with respect to the number of variables. In this manuscript, aimed at approximating the partition function, we consider multi-graph models where binary variables and multivariable factors are associated with edges and nodes, respectively, of an undirected multi-graph. We suggest a new methodology for analysis and computations that combines the Gauge function technique from Chertkov and Chernyak (2006 Phys. Rev. E 73 065102; 2006 J. Stat. Mech. 2006 P06009) with the technique developed in Anari and Oveis Gharan 2017 arXiv:1702.02937; Gurvits 2011 arXiv:1106.2844; Straszak and Vishnoi 2017 55th Annual Allerton Conf. on Communication, Control, and Computing, based on the recent progress in the field of real stable polynomials. We show that the Gauge function, representing a single-out term in a finite sum expression for the partition function which achieves extremum at the so-called belief-propagation gauge, has a natural polynomial representation in terms of gauges/variables associated with edges of the multi-graph. Moreover, Gauge function can be used to recover the partition function through a sequence of transformations allowing appealing algebraic and graphical interpretations. Algebraically, one step in the sequence consists of the application of a differential operator over gauges associated with an edge. Graphically, the sequence is interpreted as a repetitive elimination/contraction of edges resulting in multi-graph models on decreasing in size (number of edges) graphs with the same partition function as in the original multi-graph model. Even though the complexity of computing factors in the sequence of the derived multi-graph models and respective Gauge functions grow exponentially with the number of eliminated edges, polynomials associated with the new factors remain bi-stable if the original factors have this property. Moreover, we show that BP estimations in the sequence do not decrease, each low-bounding the partition function.

Publisher

IOP Publishing

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics

Reference83 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3